Zähler gegen Nenner
Eine Zahl, die in Form von a / b dargestellt werden kann, wobei a und b (≠ 0) ganze Zahlen sind, wird als Bruch bezeichnet. a heißt Zähler und b ist Nenner. Brüche stellen Teile von ganzen Zahlen dar und gehören zur Menge der rationalen Zahlen.
Der Zähler eines allgemeinen Bruchs kann einen beliebigen ganzzahligen Wert annehmen. a∈ Z, während der Nenner nur ganzzahlige Werte außer Null annehmen kann; z - 0. Der Fall, in dem der Nenner Null ist, ist in der modernen mathematischen Theorie nicht definiert und gilt als ungültig. Diese Idee hat eine interessante Implikation für das Studium des Kalküls.
Es wird im Allgemeinen falsch interpretiert, dass der Nennwert unendlich ist, wenn der Nenner Null ist. Dies ist mathematisch nicht korrekt. In jeder Situation wird dieser Fall von den möglichen Werten ausgeschlossen. Nehmen Sie zum Beispiel eine Tangensfunktion, die sich unendlich nähert, wenn sich der Winkel π / 2 nähert. Die Tangensfunktion ist jedoch nicht definiert, wenn der Winkel π / 2 ist (sie liegt nicht im Bereich der Variablen). Daher kann man nicht sagen, dass tan π / 2 = ∞ ist. (Aber im frühen Alter wurde jeder Wert, der durch Null geteilt wurde, als Null betrachtet.)
Die Fraktionen werden oft verwendet, um Verhältnisse anzugeben. In solchen Fällen repräsentieren der Zähler und der Nenner die Zahlen im Verhältnis. Betrachten Sie zum Beispiel folgendes 1/3 → 1: 3
Der Begriff "Zähler" und "Nenner" kann für Surde mit gebrochener Form (wie 1 / √2, die keine Bruchzahl, sondern eine irrationale Zahl ist) und für rationale Funktionen wie f (x) = P (x) / Q (x) verwendet werden ). Der Nenner ist hier auch eine Funktion, die nicht Null ist.
Zähler gegen Nenner
• Der Zähler ist die oberste (der Teil über dem Strich oder der Linie) eines Bruchs.
• Der Nenner ist die unterste Komponente (der Teil unter dem Strich oder der Linie) der Fraktion.
• Der Zähler kann einen beliebigen ganzzahligen Wert annehmen, während der Nenner einen anderen ganzzahligen Wert als Null annehmen kann.
• Der Begriff Zähler und Nenner kann auch für Surds in Form von Brüchen und für rationale Funktionen verwendet werden.