Gauß-Gesetz gegen Coulomb-Gesetz
Das Gaußsche Gesetz und das Coulombsche Gesetz sind zwei sehr wichtige Gesetze, die in der Theorie des elektromagnetischen Feldes verwendet werden. Dies sind zwei der grundlegendsten Gesetze, die zur Entwicklung des elektromagnetischen Feldes führen. Diese Gesetze führen zusammen mit dem Gesetz von Ampere zu den Maxwellschen Gleichungen. Die Maxwell-Gleichungen sind ein Satz von vier Gleichungen, die jedes Phänomen der elektromagnetischen Theorie beschreiben können. Ein gründliches Verständnis dieser beiden Gesetze ist erforderlich, um die Theorien des Elektromagnetismus vollständig zu verstehen. In diesem Artikel werden wir das Gaußsche Gesetz und das Coulombsche Gesetz, ihre Anwendungen, die Definitionen, die Ähnlichkeiten zwischen diesen beiden und schließlich die Unterschiede zwischen dem Gaußschen Gesetz und dem Coulombschen Gesetz diskutieren.
Gauß-Gesetz
Das Gaußsche Gesetz ist ein sehr wichtiges Gesetz, das die Eigenschaften elektrischer Felder, Magnetfelder und Gravitationsfelder beschreibt. Das Gaußsche Gesetz für elektrische Felder besagt, dass der elektrische Fluss durch eine geschlossene Oberfläche proportional zu der von der Oberfläche eingeschlossenen elektrischen Ladung ist. Es kann als ∅ = Q / ε ausgedrückt werden0 wobei φ der gesamte elektrische Fluss über der Oberfläche ist, Q die von der Oberfläche eingeschlossene Ladung ist und ε0 ist die Dielektrizitätskonstante. Um dieses Konzept zu verstehen, muss man zunächst das Konzept des elektrischen Flusses verstehen. Der elektrische Fluss über einer Oberfläche ist ein Maß für die Anzahl der elektrischen Feldlinien, die durch eine Oberfläche laufen. Dies ist direkt proportional zur Anzahl der elektrischen Feldlinien über der Oberfläche. Das Gaußsche Gesetz für die Magnetfelder ist ein sehr wichtiges Gesetz. Das Gaußsche Gesetz für Magnetfelder besagt, dass der gesamte magnetische Fluss über eine geschlossene Oberfläche gleich Null ist. Dies liegt daran, dass es keine magnetischen Monopole gibt. Magnetpole existieren nur als Dipole. In jeder geschlossenen Oberfläche ist die magnetische Nettopolarität Null. Daher ist der magnetische Fluss über eine geschlossene Oberfläche gleich Null.
Coulomb-Gesetz
Das Coulombsche Gesetz ist ein Gesetz, das die Wechselwirkungen zwischen elektrisch geladenen Teilchen beschreibt. Dies besagt, dass die Kraft zwischen zwei elektrisch geladenen Teilchen proportional zu den Ladungen ist und umgekehrt proportional zum Quadrat der Entfernung zwischen den beiden Teilchen ist. Dies kann mit der Gleichung F = Q ausgedrückt werden1Q2/ 4πr2ε0 wo Q1 und Q2 sind die Ladungen der Teilchen, r ist der Abstand zwischen den beiden Ladungen und ε0 ist die Dielektrizitätskonstante des freien Raums. Wenn diese Gleichung für ein anderes Medium als den freien Raum definiert ist, ist ε0 sollte durch ε ersetzt werden, wobei ε die Dielektrizitätskonstante des Mediums ist. Wenn diese Gebühren dasselbe Vorzeichen hätten, wäre F ein positiver Wert. Dies bedeutet, dass sich die beiden Ladungen gegenseitig abstoßen. Wenn diese beiden Ladungen unterschiedliche Vorzeichen haben, wird F ein negativer Wert; Beschreibt also eine Anziehung zwischen den beiden Ladungen.
Was ist der Unterschied zwischen dem Coulombschen Gesetz und dem Gaußschen Gesetz? • Das Coulombsche Gesetz beschreibt die Wechselwirkungen zwischen zwei Ladungen, während das Gaußsche Gesetz den Fluss über eine geschlossene Oberfläche von der in der Oberfläche eingeschlossenen Eigenschaft beschreibt. • Das Coulomb-Gesetz gilt nur für elektrische Felder, während das Gauß-Gesetz für elektrische Felder, Magnetfelder und Gravitationsfelder gilt. |